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Three-dimensional (3D) modeling of medical images is a critical part of surgical simulation. In this paper, we focus on 

the magnetic resonance (MR) images denoising for brain modeling reconstruction, and exploit a practical solution. We 

attempt to remove the noise existing in the MR imaging signal and preserve the image characteristics. A wavelet-based 

adaptive curve shrinkage function is presented in spherical coordinates system. The comparative experiments show that 

the denoising method can preserve better image details and enhance the coefficients of contours. Using these denoised 

images, the brain 3D visualization is given through surface triangle mesh model, which demonstrates the effectiveness 

of the proposed method. 
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The three-dimensional (3D) reconstruction of brain 

structures from magnetic resonance (MR) imaging is a 

crucial work in clinical diagnosis, surgical planning and 

the analysis of neuroanatomical variability. MR imaging 

is the most powerful imaging technique, and it can be 

adopted for brain imaging. MR images are affected by 

several noise sources, where the main source is thermal 

noise introduced by the movement of the charged 

particles in the radio frequency coils. These noises can 

affect the quality of the MR images and limit the correct 

diagnosis. Therefore, the denoising should be firstly 

performed to improve the image quality. Generally, post-

processing filtering techniques are of high demand 

because these methods will not increase the acquisition 

time or reduce the spatial resolution compared with the 

acquisition stage filtering of MR imaging[1]. There are 

many kinds of denoising methods proposed in recent 

years, such as Wiener filtering[2], principal component 

analysis[3], non-local means[4] and wavelets analysis[5]. 

Wavelet has superior performance in image denoising 

due to the multi-resolution properties. Many techniques 

based on thresholding of wavelet coefficients are proposed 

for denoising, and the main idea is to transform the data 

into the wavelet basis. Wang[6] introduced a hyperbolic 

shrinkage function in the spherical coordinates (Sph-

Wavelet), which avoids processing the wavelet coeffi-

cients directly. Khare[7] proposed an adaptive soft thre-

shold function, which used multilevel adaptive threshold-

ing and shrinkage (MATS) on complex wavelet coefficients. 

BiShrink method[8] used a bivariate shrinkage function 

which models the statistical dependence between a wavelet 

coefficient and its parent. This approach needs to estimate 

the marginal variance of the coefficient in a local 

neighborhood. All these methods attempt to extract the 

maximum amount of useful information from data, they are 

subject to some assumptions, so these methods may perform 

different effects in terms of denoising quality, computation 

cost and boundary preserving.  

In this paper, using spherical transform into wavelet 

domain, we present an improved nonlinear shrinkage 

function for suppressing the Gaussian white noise in MR 

imaging. This idea is to process the radial component 

instead of the wavelet coefficients, because the radial 

direction in spherical coordinate carries the most energy 

of noise in high frequency. We compare our method with 

other three image denoising methods in peak signal noise 

ratio (PSNR) and mean square error (MSE), and the 

results are satisfactory in denoising quality. From a set of 

parallel slices generated from MR imaging, it is possible 

to reconstruct and display the external surface of brain 

using the triangle meshes of the geometric modeling. The 

results of 3D triangle mesh generation and visualization 

for MR brain slices are given.  

We focus on the MR image denoising and attempt to 

remove the noise exsisting in the MR imaging signal and 

preserve the image characteristics. The raw and complex 

MR data acquired in the Fourier domain are characterized 

by a zero mean Gaussian probability density function, 
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and the noise distributions in the real and imaginary 

components will be still Gaussian after the inverse 

Fourier transform[9]. So the noise in MR imaging data is 

well modeled by a Gaussian probability density function. 

The noise estimation methods in wavelet domain are the 

most popular among the effective denoising procedures. 

In fact, wavelets have been used for denoising in many 

medical imaging applications[10,11]. The image in wavelet 

domain is decomposed into approximation sub-band and 

detail sub-band in various scales. 

The basic idea of wavelet denoising is as follows. 

Firstly, calculate the discrete wavelet transform, then 

remove noise from the wavelet coefficients, and finally 

apply the inverse wavelet transform to reconstruct a 

denoised signal. The detailed coefficients are regarded as 

soft or hard threshold to estimate the signal components. 

Wavelet shrinkage is a non-linear process. It mostly 

depends on the threshold parameters which have much 

influence on denoising quality. Assume that an additive 

noise model in each wavelet sub-band is 

k k k
w x n= + ,                                                            (1) 

where wk is the wavelet coefficient, xk is the unknown 

noise-free signal component, and nk is the noise contribu-

tion. The wavelet shrinkage estimators are often repre-

sented as 

ˆ
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where Pk denotes a shrinkage factor. So wk is likely to 

represent pure noise as Pk close to 0, while wk is likely to 

represent noise-free image as Pk close to 1. There are two 

classical thresholding rules, in which a threshold value T 

is defined and Pk is specified as follows. For the hard 

thresholding, 
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and for the soft thresholding, 
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So the critical task in wavelet thresholding is the thresh-

old selection. 

Zhang et al[12-14] redefined the spherical transform in 

wavelet domain. If f denotes a two-dimensional image, 

and ( )

,

i

j k
C  (i=1,2,3) are the wavelet decomposing high fre-

quency components of the image f, the spherical trans-

form in wavelet is defined as 
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where (1)

,j k
C , (2)

,j k
C  and (3)

,j k
C  represent horizontal, vertical 

and diagonal components, respectively, R is the radial 

component in spherical coordinate system, and θ and φ 

are the phase angle components. The advantage of intro-

ducing spherical coordinate to wavelet domain is that the 

image energy in the three high frequency parts can be 

completely mapped to the radial component R. Then, we 

just need to process the radial component R instead of the 

wavelet coefficients, which can reduce the image distor-

tion in a certain degree. Furthermore, Zhang[15] proposed 

a new adaptive threshold 6 /T R N= , where N is im-

age pixel, which has been proved based on Besov space 

norm theory.  

In this paper, keeping focus on MR image denoising, 

we apply the threshold to a new shrinkage function as 
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which has much benefit to the MR images. 

We can see that the constructed shrinkage function 

continues at T, because R*(i, j)=0 when R(i, j)≤T. If R(i, 

j)>T, the proposed function R*(i, j) satisfies the following 

inequation as 

( ) ( ) ( )*

, , < ,R i j T R i j R i j− < .                                  (7) 

Therefore, the proposed shrinkage function curve is lo-

cated between the traditional hard threshold and soft 

threshold. 

The procedure of the proposed denoising method is as 

follows. (I) Decompose the observed image f by wavelet 

transform at different levels; (II) Transform the high fre-

quency coefficients of ( )

,

i

j kC  (i=1,2,3) at different scales to 

spherical coordinates system by Eq.(5); (III) Process the 

radial component R using the proposed curve shrinkage 

function of Eq.(7) if the estimated radial component satis-

fies R*(i, j)=0, then set the angles of θ and φ to zero; (IV) 

Do inverse spherical transform to R*, θ and φ in spherical 

coordinates as follows, 
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where (1) *

,
( )

j k
C , (2) *

,
( )

j k
C  and (3) *

,
( )

j k
C are the estimated hori-

zontal, vertical and diagonal high frequency components, 

respectively; (V) Reconstruct the image by applying the 

inverse wavelet transform. 

A series of experiments based on real MR images are 

done to evaluate the proposed denoising shrinkage 

function and the 3D triangulation mesh model. We got the 

MR images from Tianjin First Center Hospital in China, 

including 51 head tomography slices of one person, where 

the image size of each slice is 128×128.  
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It is a popular way to evaluate the denoising effects 

using the PSNR and MSE, which are expressed as 
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where fi,j is the original image, *

,i j
f is the image after re-

moving noise, and M and N are the sizes of the images. 

The main source of noise in MR images is the thermal 

noise in the patient. The signal component of the meas-

urements is achieved in both real and imaginary channels, 

and each of the two orthogonal channels is affected by 

additive white Gaussian noise. The noise in the recon-

structed complex-valued data is thus complex white 

Gaussian noise. So by adding white Gaussian noise to the 

MR images, we get PSNR and MSE at different decom-

position levels as shown in Fig.1. It can be seen from 

Fig.1 that the denoising effect tends to be stable in de-

composition levels of 3, 4 and 5. When the decomposi-

tion level is greater than 6, the turbulence will generate in 

PSNR and MSE. 

 

 
(a) PSNR 

 
(b) MSE 

Fig.1 PSNR and MSE on decomposition level 

 

We choose level 4 as decomposition scale in the next 

experiments. In order to compare the effects of different 

denoising methods, we add white Gaussian noise to the 

original image, and compare our method with other three 

denoising algorithms of SphWavelet[6], MATS[7] and 

BiShrink[8]. Fig.2 shows the denoising results of four 

methods on MR image. Fig.2(a) is the original MR image 

which is the 24th of the head MR image sequence, Fig.2(b) 

is the image with an increasing white Gaussian noise 

when the mean and deviation of the noise are 0 and 25, 

respectively, Fig.2(c)–(e) are the results of SphWavelet 

method, MATS method and BiShrink algorithm, 

respectively, and Fig.2(f) is the result of the shrinkage 

function we proposed. Compared with these denoising 

algorithms, our proposed method shows the satisfactory 

result.  

 

  
(a) Original image                          (b) Noising image 

  
(c) SphWavelet                                    (d) MATS 

  
                  (e) BiShrink                     (f) Proposed shrinkage function 

Fig.2 Comparison of results by four kinds of denois-

ing methods on the MR image 

 

We evaluate the validity of the proposed method by 

computing PSNR and MSE. After adding Gaussian white 

noise with different deviations, the results are shown in 

Fig.3. From PSNRs of four methods shown in Fig.3(a), 

we can see our method can get the highest PSNR in each 

noise deviation. From Fig.3(b), we can see that our 

method can get the lowest MSE in each deviation. These 

data prove the satisfactory result of the shrinkage func-

tion. 
We segment brain from the denoised MR imaging head 

slices, using triangle mesh algorithm for MR imaging 3D 
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surface reconstruction, and the brain mesh result is shown 
in Fig.4. The presented result demonstrates the effectiv-
eness of the brain reconstruction.  

 

 
(a) PSNR 

 
(b) MSE 

Fig.3 PSNR and MSE results of four kinds of denois-

ing methods 

 

Fig.4 Brain mesh result 

 

Denoising is the first and necessary step to be taken 

before the image data are analyzed. It is difficult to 

remove the noise from MR images, and the state-of-art 

methods vary from standard filters to more advanced 

filters. We present a method for denoising MR images 

based on curve shrinkage function in the spherical coordin- 

ates, and it has the advantage that the most energy of noise 

is carried by the radial component, so we can focus on 

processing the radial component instead of the wavelet 

coefficients in other nonlinear threshold filtering methods. 

The experiments show that it is effective on terms of 

improving PSNR as well as preserving the features of the 

activated region. The running time of the proposed 

denoising method is less than that of the compared 

algorithms, and it is more obvious with the increase of 

scale. However, if the noise in MR image with low signal-

to-noise ratio is strictly Rician-distributed, this can be no 

longer approximated as white Gaussian like that in the 

classical methods. Our further study will pay more 

attention to the Rician noise removal in MR images.  
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